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Lectins have been used as models for studies of the
molecular basis of protein�carbohydrate interaction
and specificity by deciphering codes present in the
glycan structures. The purpose of the present study
was to purify and solve the complete primary and crys-
tal structure of the lectin of Camptosema pedicellatum
(CPL) complexed with 5-bromo-4-chloro-3-indolyl-a-D-
mannose (X-Man) using tandem mass spectrometry.
CPL was purified by single-step affinity chromatog-
raphy. Mass spectrometry findings revealed that puri-
fied CPL features a combination of chains weighing
25,298� 2 (a-chain), 12,835� 2 (b-chain) and
12,481� 2Da (c-chain). The solved crystal structure
of CPL features a conservative mutation in the hydro-
phobic subsite, a constituent of the carbohydrate recog-
nition domain (CRD), indicating the relevance of
hydrophobic interactions in the establishment of inter-
actions with carbohydrates. The substitution and the
analysis of the interactions with X-Man also revealed
that the hydrophobic effect caused by a minor change
in the hydrophobic subsite interferes in the formation of
H-bonds due to the reorientation of the indolyl group in
the CRD.

Keywords: Camptosema pedicellatum/hydrophobic
subsite/lectin.

Abbreviations: CFL, Cratylia floribunda lectin; ConA,
concanavalin A; ConBr, Canavalia brasiliensis lectin;
ConM, Canavalia maritima lectin; CPL, Camptosema
pedicellatum lectin; CRD, carbohydrate recognition
domain; DGL, Dioclea grandiflora lectin; DGui,
Dioclea guianensis lectin; DVL, Dioclea violacea

lectin; DwL, Dioclea wilsonii lectin; HU,
hemagglutinating units; NO, nitric oxide; X-Man,
5-bromo-4-chloro-3-indolyl-a-D-mannose.

The ability of plant extracts to agglutinate cells has
been reported since the early 19th century. This activ-
ity has subsequently been shown to be the most
common characteristic of lectins. Lectins were long re-
garded as mere curiosities of nature, but in the 1960s,
when they were discovered to trigger an array of bio-
logical events, lectins became the object of intensive
study (1). Today they are known to play a major
role in cell communication, host defence, fertilization,
development, parasite infection and tumour
metastasis (2).

Lectins are a structurally heterogeneous group of
proteins or glycoproteins with at least one non-
catalytic domain binding reversibly to a specific
mono- or oligosaccharide (3). Lectins are ubiquitous
in nature and are found in all types of living organisms.
They have been used as models for the study of the
molecular basis of protein�carbohydrate interaction
and specificity by deciphering codes present in glycan
structures (4).

Many different and evolutionarily unrelated lectin
families have been identified. Among these, lectins
purified from species of the family Leguminosae rep-
resent the largest and most thoroughly studied family
(5). Despite their relatively conserved primary struc-
tures, Leguminosae lectins exhibit considerable diver-
sity in glycan-binding specificities. Because they
are often expressed in high yields in legume seeds,
they can easily be purified in amounts suitable for
experimental approaches that require large amounts
of protein such as microcalorimetry and X-ray
crystallography. Legume lectins have traditionally
represented a paradigm for the study of
protein�carbohydrate interactions (4). Thus, concana-
valin A (ConA), extracted from the seeds of Canavalia
ensiformis (family Leguminosae, tribe Phaseoleae,
subtribe Diocleinae), is the best characterized plant
lectin so far.

Legume lectins of the Diocleinae subtribe, often
referred to as ConA-like lectins, present glucose/
mannose-monosaccharide binding specificities, and
chemical and physicochemical similarities reveal con-
siderable homology in amino acid sequence and 3D
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structure (6, 7). Nevertheless, Diocleinae lectins may
differ substantially in biological activities, as shown
in studies on human lymphocyte proliferation and
interferon g production (8), induction of paw oedema
and vasodilator effects in rats (9), nitric oxide produc-
tion (10, 11), histamine release from rat peritoneal
mast cells (12), in vivo lymphocyte activation and
apoptosis (13), antidepressant-like effect in mice (14)
and differentiation of human colon cancer cells (15),
among others.

Differences in biological activity are associated
with factors such as pH-dependent oligomerization,
differences in the position of amino acids in the
carbohydrate-binding site (6, 7, 16) and minor
changes in residues in key positions of the quaternary
structure (17, 18).

Structural studies can help clarify the molecular
mechanisms involved in the biological activities of dif-
ferent lectins, identify important aspects of pro-
tein�carbohydrate interaction and show how lectins
decode the large amounts of information stored in
glycan structures.

Thus, the purpose of the present study was to purify
and solve the complete primary and crystal structure of
the lectin of Camptosema pedicellatum (CPL) com-
plexed with 5-bromo-4-chloro-3-indolyl-a-D-mannose
(X-Man) using tandem mass spectrometry.

Materials and Methods

Plant material
Seeds of CPL were collected from plants grown in
Northeastern Brazil (Crato, Ceará). The botanical
identification was carried out at the Department of
Biology, Federal University of Ceará (UFC).

Lectin purification
Mature seeds of C. pedicellatum were ground into a
fine powder using a coffee mill. The flour was stirred
with 0.15M NaCl (1:10, m/v) for 3 h at room tempera-
ture. The mixture was centrifuged at 10,000�g for
20min at 4�C. The clear supernatant (crude extract)
was applied to a Sephadex G-50 column (a
cross-linked dextran) (15 cm�2 cm) equilibrated with
150mM NaCl pH 7.0 containing 5mM CaCl2 and
5mM MnCl2. After washing of the unbound material
in the equilibrium solution, the lectin was eluted from
the gel with 100mM glucose, pooled, exhaustively dia-
lysed against distilled water and freeze-dried.
Absorbance at 280 nm was used to estimate the protein
concentration in all chromatographic fractions. The
purification process was monitored by SDS�PAGE
as described elsewhere (19) and the purified lectin
was used for mass spectrometry analysis and crystal-
lization trials.

Hemagglutination activity and inhibition assays
Hemagglutination assays were carried out as described
elsewhere (20) using serial dilutions with rabbit
erythrocytes, either native or treated with proteolytic
enzymes (trypsin or papain). Results were expressed in
hemagglutinating units (HU), with one HU being
defined as the smallest amount (mg) of protein per

millilitre capable of inducing visible agglutination.
The lectin carbohydrate-binding specificity was defined
as the smallest sugar concentration capable of fully
inhibiting agglutination. Two-fold serial dilutions
(initial concentration: 100mM) of D-glucose, D-galact-
ose, D-mannose, D-arabinose, D-fructose, D-fucose,
D-xylose, N-acetyl-D-glucosamine, a-methyl-D-galacto-
pyranoside, a-methyl-D-mannopyranoside, lactose and
carrageenan were prepared in 150mM NaCl. Lectin
(4HU) was added to each dilution.

MW determination by mass spectrometry
The molecular mass of CPL was determined by elec-
trospray ionization mass spectrometry (ESI�MS)
using a hybrid mass spectrometer (the Synapt HDMS
system, Waters Corp., Milford, USA) operating in
positive ion mode at 10,000 resolution. Protein solu-
tion (10 pmol/ml) was infused into the system using the
built-in syringe drive at a flow rate of 10 ml/min. The
capillary voltage and the cone voltage were set at 3 kV
and 40V, respectively. The source temperature was
maintained at 100�C and nitrogen was used as a
drying gas (flow rate: 150 l/h). Data acquisition was
done with the software Mass Lynx 4.0 and the multiply
charged spectra were deconvoluted using maximum
entropy techniques (21).

Protein digestion and tandem mass spectrometry
analysis
The protein digestion and tandem mass spectrometry
analysis were carried out as described by Shevchenko
et al. (22). Thus, protein was submitted to SDS�PAGE
and the bands were excised and bleached in a solution
of 50mM ammonium bicarbonate in 50% acetonitrile.
The bands were then dehydrated in 100% acetonitrile
and dried in a speedvac (LabConco). The gel was rehy-
drated with a solution of 50mM ammonium bicarbon-
ate containing trypsin (Promega) or chymotrypsin
(Sigma) (1:50 w/w; enzyme:substrate) at 37�C over-
night. Subsequently, the peptides were extracted in a
solution of 50% acetonitrile with 5% formic acid and
concentrated in a speedvac. In addition, a lectin ali-
quot was dissolved in 2.0M urea in 50mM sodium
phosphate (pH 6.8) and digested for 24 h at 37�C
with endoproteinase Glu-C (Roche) obtained from
Staphylococcus aureus (1:100 w/w; enzyme:substrate).
The peptides were separated with a C18 chromatog-
raphy column (75 mm�100mm) using a
nanoAcquityTM system and eluted with acetonitrile
gradient (10�85%) containing 0.1% formic acid. The
liquid chromatograph was connected to a nanoelec-
trospray mass spectrometer source (Synapt HDMS
system, Waters Corp., Milford, USA). The mass spec-
trometer was operated in positive mode, using a source
temperature of 80�C and a capillary voltage of 3.5 kV.
The instrument was calibrated with double-protonated
[Glu1]-fibrinopeptide B ions (Mþ 2Hþ) 2þ¼ 785.84.
The LC-MS/MS experiment was done with the DDA
(data-dependent acquisition) function selecting for ex-
periments with double or triple-charged precursor
ions, which were fragmented by collision-induced dis-
sociation (CID) with the ramp collision energy level
adjusted according to the charge state of the precursor
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ion. The data were managed and analysed with the
software Proteinlynx (Waters), using ‘peptide fragmen-
tation pattern’ as search parameter. Some peptide se-
quences were obtained by de novo manual sequencing
followed by manual interpretation of CID spectra.

Primary structure analysis
The primary sequence alignments and secondary struc-
ture predictions were made with the software ESPript
2.2 (23). The theoretical pI was calculated with
ProtParam (24).

Crystallization and data collection
The freeze-dried purified lectin was resuspended in
Milli-QTM water containing 3mM X-Man at a final
concentration of 10mgml�1 and incubated at 310K
for 1 h prior to the crystallization experiments. The
crystals grew on 24-well LinbroTM plates at room tem-
perature (293K) by the vapour-diffusion method (25)
in hanging drops using Crystal Screens I and II
(Hampton Research, Riverside, CA, USA). Each well
contained 300 ml reservoir solution and the drops were
composed of equal amounts (2 ml) of protein solution
and reservoir solution.

X-ray data were collected from a single crystal
cooled to 100K. Crystals were previously soaked in a
cryoprotectant solution of water (70%) and PEG 400
(30% v/v) to avoid ice formation and submitted to
X-ray diffraction at a wavelength of 1.42 Å using a
synchrotron-radiation source (MX1 station,
Laboratório Nacional de Luz Sı́ncrotron, Campinas,
Brazil). A complete data set was obtained using a
MarCCD 165mm (MAR Research) in 180 frames
with an oscillation range of 1�. The data set was
indexed and integrated using MOSFLM (26).
Intensities were reduced through SCALA (27).

Molecular replacement and refinement
The crystal structure of CPL was determined by mo-
lecular replacement using the program MolRep (28).
The atomic coordinates used as model were those of
recombinant Dioclea grandiflora (lectin of DGL) com-
plexed with X-Man (PDB code 2JEC) (7), with a final
correlation coefficient of 62.4% and an Rfactor of
42.1% after calculation of rotation and translation
functions.

The initial structure was submitted to rigid body and
restrained refinement with the program REFMAC5
(29). Rfactor and Rfree converged to 35.96 and
36.02%, respectively. Subsequently, the structure was
modelled using WINCOOT. The loop region
(117�123) was adjusted to satisfy the electron density
map and 77 water molecules were added to the struc-
ture. The second restrained refinement yielded an
Rfactor of 19.0% and an Rfree of 23.6%. The stereo-
chemical quality of the model was inspected by
Ramachandran plot using PROCHECK program
(29), Van der Walls contacts, polar contacts and
hydrophobic interaction were analysed with the
CCP4 software CONTACT, adopting the cut-off dis-
tances 3.5, 3.5 and 5.0 Å, respectively. All figures and
superpositions were performed with the program

PyMOL (30). The atomic coordinates for the structure
were deposited in PDB with access code 3U4X.

Results and Discussion

CPL was purified in a single step using a Sephadex
G-50 affinity chromatography column, in which the
lectin was quantitatively retained in the cross-linked
dextran gel column and desorbed with D-glucose, pro-
viding strong evidence of carbohydrate-binding prop-
erties (Fig. 1a). This procedure has been widely used
for the purification of Diocleinae lectins (16, 31�33).
Hemagglutinating activity towards native and
enzyme-treated rabbit erythrocytes was fully inhibited
by D-mannose (12.5mM), D-glucose and a-methyl-D-
mannopyranoside (3.16mM), but not by as much as
100mM D-galactose, D-arabinose, D-fructose, D-fucose,
D-xylose, N-acetyl-D-glucosamine, a-methyl-D-galacto-
pyranoside, lactose or carrageenan (Table I). Similar
carbohydrate-binding specificities have been reported
for other Diocleinae lectins (16, 34). Furthermore,
CPL displayed greater affinity for a-methyl-D-manno-
pyranoside than for D-mannose, indicating the pres-
ence of a more strongly hydrophobic substituent
at C-1, conceivably allowing for additional inter-
actions with hydrophobic regions of the lectin-binding
site (34).

The electrophoretic profile obtained with
SDS�PAGE of the affinity-purified CPL, both in the
presence and absence of b-mercaptoethanol, revealed a
major band of 30 kDa (a-chain) and two minor com-
ponents (b-chain and g-chain) of 16 and 13 kDa, re-
spectively (Fig. 1b), suggesting CPL is a typical
ConA-like lectin subject to the posttranslational
process of circular permutation described by
Carrington et al. (35). Thus, CPL is expressed as a
pre-pro-protein (Ntermsignal peptideþ g-chainþ linker
peptideþb-chainþ Ctermsignal peptide) cleaved into a
g product and a b product. The active protein is a final
fused product (a-chain) with the two fragments in in-
verse order and no signal or linker peptides (35�37).
The b- and g-fragments observed on SDS�PAGE
(Fig. 1b) are unlinked products of this process while
the a-chain is the mature protein. Electrospray ioniza-
tion mass spectrometry confirmed purified CPL con-
sists of a combination of chains weighing 25,298� 2
(a-chain), 12,835� 2 (b-chain) and 12,481� 2Da
(g-chain) (Fig. 2).

The complete CPL protein sequence was obtained
from overlaps of 27 digested peptides sequenced by
tandem mass spectrometry, resulting in 236 amino
acid residues (b-chain: 1�118. g-chain: 119�236)
(Fig. 3). The isotope-averaged molecular masses calcu-
lated for the full-length a-chain (25,297Da) and its
derived fragments b and g (12,835 and 12,480Da, re-
spectively) are in agreement with the experimentally
determined mass. Table II shows all sequenced pep-
tides and their respective molecular mass. The theoret-
ical pI based on the final sequence was 5.4. The protein
sequencing data reported in this article are deposited in
the UniProt Knowledgebase under the accession
number P86894.
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The primary structure of CPL is quite homologous
to that of other Diocleinae lectins, such as D. guianen-
sis (Dgui) (86%) (SwissProt accession code: P81637),
D. grandiflora (DGL) (85%) (SwissProt accession
code: A9J251), D. violacea (DVL) (81%) (PDB acces-
sion code: 2GDF), D. wilsonii (DwL) (85%) (SwissProt
accession code: P86624), C. ensiformis (ConA) (81%)
(SwissProt accession code: P02866), C. brasiliensis
(ConBr) (81%) (SwissProt accession code: P55915)
and Cratylia floribunda (CFL) (97%) (SwissProt acces-
sion code: P81517). CFL differs from CPL by only five
residues: 99 (V/L), 136 (S/N), 201 (P/T), 205 (P/I) and
211 (F/W) (Fig. 4).

Some Diocleinae lectins exhibit pH-dependent
dimer�tetramer equilibrium. The physiological rele-
vance of this phenomenon remains poorly understood.

However, pH-dependent dimer/tetramer equilibrium
has been reported to exert a considerable influence
on oligosaccharide recognition and biological activity
(7), suggesting residues 123 (A/E), 131 (N/H) and
132(Q/K) play an important role in dimer/tetramer
equilibrium properties. Similarly to Dgui (17) and
CFL (38), which exhibit pH-dependent dimer�tetra-
mer transition, CPL contains the residues Ala123,
Asn131 and Gln132.

One of the most important primary structural
differences between CPL and other Diocleinae lectins
is the substitution of Val99 for Leu99. This conser-
vative amino acid substitution was confirmed by
MS/MS analyses of the peptides T5 (Fig. 5) and E2.
The product-ion spectra of the doubly charged ion
at m/z¼ 541.30 and of the singly charged ion
at m/z¼ 1651.87 (E2) produced sequence-specific
y-ion series, from which the primary structures
were interpreted as VGLSASTGVYK and
WVRVGLSASTGVYKE, respectively. The tryptic
peptide which comprises amino acids from V91 to
K101 of other Diocleinae lectins sequenced by MS/
MS (39�41) presented an m/z ratio of 555.45
(MþHþ 1108.90), corresponding to the peptide with
Leu99. Legume lectins are known to possess three
types of hydrophobic subsites based on different
ligand affinities. The fact that one of these subsites
is adjacent to the conserved monosaccharide binding
site explains why hydrophobic glyco/mannosides
and other hydrophobic derivative monosacchar-
ides bind more strongly (10�50 times) than their
non-hydrophobic analogues (42). Kanellopoulos
et al. (43) determined the structures of two ConA com-
plexes, ConA/40-nitrophenylalpha-D-mannopyranoside

Fig. 1 Purification of CPL. (a) Elution profile of Sephadex G-50 affinity chromatography. Approximately 10ml crude extract was applied to the
Sephadex G-50 column (15 cm�2 cm) equilibrated with 150mM NaCl containing 5mM CaCl2 and 5mM MnCl2. The lectin was eluted with
100M D-glucose included in the above buffer at a flow rate of 1ml/min. Fractions (2.0ml) were collected and monitored for protein content at
280 nm. (b) SDS�PAGE. Lane 1: Molecular mass markers (phosphorylase b, 97 kDa; bovine serum albumin, 66 kDa; ovalbumin, 45 kDa;
carbonic anhydrase, 29 kDa; trypsin inhibitor, 20.1 kDa and a-lactalbumin, 14.4 kDa); Lane 2: CPL.

Table I. Inhibitory effect of monosaccharides and disaccharides on

haemagglutinating activity of CPL.

Sugar MIC (mM)

D-Glucose 50
D-Galactose NI
D-Mannose 12.5
D-Arabinose NI
D-Fructose NI
D-Xilose NI
D-Fucose NI
N-Acetyl-D-glucosamine NI
a-methyl-D-galactopyranoside NI
a-methyl-D-mannopyranoside 3.16
Lactose NI
Carrageenan NI

MIC, minimum inhibitory concentration; NI, sugar not inhibitory
until a concentration of 100mM.
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and ConA/40-nitrophenyl-alpha-D-glucopyranoside,
and found that the hydrophobic moiety of these mol-
ecules interacts with a hydrophobic subsite formed
by Tyr12, Leu99 and Tyr100. These amino acid resi-
dues and their interactions are conserved in all

Diocleinae lectins (44�46) but in CPL, the only lectin
in the group with Val instead of Leu in position 99.
This difference translates directly into specific fine
carbohydrate-binding properties and biological
activities.

Fig. 2 Mass spectrometry analysis of CPL. Multicharged mass spectra of CPL acquired with ESI-MS in a hybrid quadrupole/ion mobility
separator/orthogonal acceleration-time of flight mass spectrometer. Ions with different charge state were identified and numbered.

Fig. 3 Amino acid sequencing of CPL. Amino acid sequence of CPL assembled from sequences of overlapping degradation products generated
by cleavages with trypsin (T), chymotrypsin (Q) and endoproteinase Glu-C (E). The amino acid sequences of the a-chain (1�236), b-chain
(1�118) and g-chain (119�236) are highlighted.
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CPL yielded small irregular crystals in 100mM
HEPES (pH 7.5) containing 2.0M ammonium sul-
phate and 2% PEG 400 after 1week (Fig. 6a)
(Hampton Research Crystal Screen I, condition No.
39), while plate crystals were obtained in 200mM am-
monium sulphate, 100mM sodium cacodylate pH 6.5
and 30% PEG 8000 (Fig. 6b) (Hampton Research
Crystal Screen I, condition No. 15). These crystals
were not suitable for X-ray diffraction experiments.
However, several optimization steps were performed
combining these two conditions, changing the pH
and precipitant concentration. CPL crystals grew in
100mM HEPES (pH 8.5) containing 2.0M ammo-
nium sulphate and 2% PEG 400 to maximum dimen-
sions of 0.1mm�0.2mm�0.15mm (Fig. 6c).

CPL crystals diffracted to a maximum resolution of
2.15 Å using a Synchrotron radiation source (LNLS,
Campinas, Brazil). The complete data set of 180
frames was indexed, integrated and scaled in the
2.15 Å resolution range. The crystals belonged to the
orthorhombic space group I222 with cell parameters
a¼ 65.9 Å, b¼ 66.7 Å, c¼ 107.7 Å, a¼ 90�, b¼ 90�

and g¼ 90�. The Matthews coefficient 2.37 Å3Da�1

(47) was calculated based on a molecular weight of
25,298� 2Da and implies that the crystal contains
48.18% solvent (indicating the presence of a monomer
in the asymmetric unit) and that the biological assem-
bly is a 222 tetramer. The data collection statistics are
shown in Table III.

The refined monomer structure of CPL complexed
with X-Man consists of 236 amino acids folded as a
b-sandwich, as observed in several other legume lectins
(Fig. 7a). The CPL tetramer consists of two canonical

dimers linked by salt bridges between b-strands
(Fig. 7b). CPL features a metal-binding site with the
conserved residues Asn14 and Tyr12 (interacting with
calcium), Glu8 and His24 (interacting with manganese)
and Asp10 and Asp19 (interacting with both). In add-
ition, the peptide bond of Ala206 and Asn207 in the cis
configuration is isomerized due to the presence of diva-
lent metals changing the side chain orientation of Asn14
and Asp207—a common observation in legume lectins.
The substitution of a single residue can significantly
affect biological activity, as observed with site-directed
mutagenesis applied to other lectins (48).

The carbohydrate-binding site is occupied by
X-Man (Fig. 8). The complex involves 10 intermolecu-
lar H bonds formed between O3, O4, O5 and O6 of the
X-Man complex, amino acid side chains and 8 van der
Waals interactions (Table IV). Legume lectin struc-
tures feature a conserved hydrophobic subsite com-
posed of Tyr12, Leu99 and Tyr100 (44). However,
the primary structure of CPL has a conserved substi-
tution at this site (Val99 for Leu99) (Fig. 8). This
change in the hydrophobic subsite reduces the hydro-
phobic interactions between X-Man and the lectin.
Due to the absence of a methyl group, Val99 is
�1.0 Å closer than Leu99 to the indolyl group of
X-Man. As a result, the hydrophobic interactions in
this subsite strengthen the carbohydrate association in
the carbohydrate binding site (42).

The hydrophobic amino acid in position 99 not only
enhances lectin�carbohydrate interaction, it also af-
fects the orientation of X-Man in the carbohydrate
recognition domain (CRD). By placing the ligand at
a distance of 3.98 Å, Val99 causes a change in the

Table II. Sequenced peptides of C. pedicellatum lectin and their respective molecular masses.

Peptide Experimental mass (Da) Sequence

T1 3,298.6201 ADTIVAVELDTYPNTDIGDPNYQHIGINIK
T2 845.3484 WNVQDGK
T3 1,345.6206 VGTAHISYNSVAK
T4 3,221.5845 LSAIVSYPGGSSATVSYDVDLNNILPEWVR
T5 1,080.5006 VGLSASTGVYK
T6 1,512.7410 ETNTILSWSFTSK
T7 2,454.8164 TNSTADAQSLHFTFNQFSQSPK
T8 2,131.0090 DLILQGDASTDSDGNLQLTR
T9 1,287.5410 VSNGSPQSNSVGR
T10 1,460.7125 ALYYAPVHVWDK
T11 1,715.9370 SAVVASFDATFTFLIK
T12 2,786.9766 SPDSDPADGIAFFIANTDSSIPHGSGGR
T13 958.5063 LLGFPDAN
Q1 3,573.7866 DTYPNTDIGDPNYQHIGINIKSIRSKATTRW
Q2 1,487.6444 NVQDGKVGTAHISY
Q3 1,544.8213 SAIVSYPGGSSATVSY
Q4 1,850.9443 DVDLNNILPEWVGL
Q5 1,090.3043 KETNTILSW
Q6 1,847.8566 TSKLKTNSTADAQSLHF
Q7 1,162.5244 NQFSQSPKDL
Q8 3,356.6765 ILQGDASTDSDGNLQLTRVSNGSPQSNSVGRAL
Q9 1,891.8994 TKVSNSGSPQGNSVGRAL
Q10 1,356.6044 DKSAVVASFDATF
Q11 1,431.6642 IKSPDSPADGIAF
Q12 1,840.7765 FIANTDSSIPHGSGGRL
E1 816.9266 ADTIVAVE
E2 1,651.8729 WVRVGLSASTGVYKE
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Fig. 4 Multiple sequence alignment of ConA-like lectins. Alignment of CPL, CFL, Dgui, DGL, DVL, DwL, ConBr and ConA reveals a highly
conserved sequence in the secondary structure.

Fig. 5 Tandem mass spectrometry of T5 peptide of CPL. Collision-induced fragmentation of the doubly charged ion at m/z¼ 541.3 corres-
ponding to the peptide T5 of CPL (see Fig. 2 and Table II). Sequence-specific y ions used for structure determination are indicated.
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position of the indolyl group in a way unfavourable
to the establishment of a bond between the OH mol-
ecule in Tyr12 and the N1 component of X-Man
(Fig. 9a), thereby making H-bonds with Tyr12 impos-
sible (Fig. 9b). In other Diocleinae lectins complexed
with X-Man, the distance to the hydroxyl group in
Tyr12 is reduced and interaction is facilitated due to

the presence of Leu99 in the hydrophobic subsite
(Table V).

The CRD superposition analysis of DVL (PDB
code: 3AX4) and CPL (PDB code: 3U4X) (Fig. 9b)
revealed differences in the position of the indolyl
group and the hydroxyls in Tyr12. Gadelha et al.
demonstrated the importance of the hydroxyl-Tyr12

Table III. Statistics of data collection, refinement and structure quality.

Parameter Value

Data collection
Beamline wavelength 1.42 Å
Space group I222
Unit cell parameters (Å)

a 65.9
b 66.7
c 107.7

Total reFections 85,239
Number of unique reFections 12,740
Molecules per asymmetric unit 1
Rmerge

a (%) 14.7 (25.0)d

Completeness (%) 96.4 (96.9)d

Multiplicity 6.7 (6.2)d

I/s 3.4 (2.8)d

Molecular replacement
Correlation coefficient 62.4
Rfactor

b (%) 42.1
Refinement

Resolution range (Å) 21.5�2.1 (2.2�2.1)d

Rfactor
b(%) 19.0

Rfree
c (%) 23.6

Number of residues in asymmetric unit 236
Number of water molecules 77

RMS deviations from ideal values
Bond lengths (Å) 0.019
Bond angles (degrees) 1.924

Temperature factor
Average B value for whole protein chain (Å) 17.84

Ramachandran plot
Residues in most favoured regions (%) 95.7
Residues in additional allowed regions (%) 4.3
Residues in generously allowed regions (%) 0

aRmerge ¼

P
hkl

P
i
IðhklÞ�hIðhklÞii
�
�

�
�

P
hkl

P
i
hIðhklÞii

where I(hkl)i is the intensity of i-th measurement of reflection h and I(hkl) is the

mean value of the I(hkl)i for all I measurements.

bRfactor ¼

P

h

Fobsj j� Fcalcj jj j

P

h

Fobsj j

cCalculated with 5% of the reflections omitted from refinement.
dValues in parentheses represent the high resolution shell.

Fig. 6 Crystals of CPL. (a) Plate crystals obtained with Crystal Screen I condition No. 15, (b) crystals obtained with Crystal Screen I condition
No. 15 and (c) single crystal diffracted at 2.15 Å obtained with the optimization of condition No. 39.
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to the configuration of CRD in the lectin of
C. maritima (ConM), associated with the substitution
of Pro for Ser in position 202, bringing Tyr12 closer
to the disaccharides forming H-bonds. This was
later adduced to explain why ConM can interact
with endothelial cell glycans and stimulate NO produc-
tion by the activation of endothelial nitric oxide
synthase (11). Surprisingly, the difference in position
between ConM and ConA was enough to increase
NO production at least 3-fold, despite 96%
homology (49).

The position of the indolyl group in CPL and other
ConA-like lectins differs by 0.9 Å, enough to prevent
the formation of H-bonds with Tyr12. In fact, the
hydrophobic interactions of Val/Leu significantly in-
crease the association constant of the ligand in the
CRD. The residue can model the ligand inside the
site by hydrophobic interaction, possibly modifying
the affinity of Val99-lectins and Leu99-lectins for
carbohydrate complexes. This is a small but seemingly

Fig. 7 The canonical lectin dimer presented in the CPL tetramer. (a) Overall structure of CPL complexed with X-Man. (b) The two subunits of the
canonical dimmer. Ca2þ (black) and Mn2þ (white) are shown as spheres.

Fig. 8 Representation of the surface area of the carbohydrate recognition domain of CPL complexed with X-Man. Amino acids that compose the
hydrophobic subsite are labelled: Tyr12, Val99 and Tyr100.

Table IV. Van der Waals interaction and polar contacts between the

lectin from C. pedicellatum seeds and X-Man.

Amino acids X-Man Distances (Å)

Van der Waals interactions
Tyr12 OH C11 3.38
Asp207 OD1 C4 3.39
Asp207 CG O4 3.48
Arg227 CB O4 3.40
Val99 CB O5 3.44
Gly98 CA O6 3.21
Gly98 C O6 3.43
Ala206 CB O6 3.27

Polar contacts
Arg227 N O3 2.93
Asn14 ND2 O4 3.01
Asp207 OD1 O4 2.60
Arg227 N O4 3.19
Val99 N O5 3.06
Gly98 N O6 3.33
Val99 N O6 3.01
Tyr100 O O6 3.36
Tyr 100 N O6 3.01
Asp207 OD2 O6 2.97
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important variation within these otherwise quite hom-
ologous molecules.

The diversity of biological activities induced by
Diocleinae lectins have been shown to be related to
several factors, alone or in combination, including bio-
logical assembly and dimer-tetramer equilibrium (38),
changes in CRD configuration induced by punctual
amino acid modifications (49), CRD volume (46)
and, as shown in the present study, substitutions in
hydrophobic subsite amino acid residues.

The crystal structure of CPL features a conservative
mutation in the hydrophobic subsite, a constituent of
the CRD. This modification shows the relevance of
hydrophobic interactions in the establishment of inter-
actions between carbohydrates and hydrophobic sub-
stituents and how these interactions determine the
ligand orientation at the carbohydrate binding site,
enhancing the lectin-carbohydrate interaction specifi-
city. The substitution and the analysis of the inter-
actions with X-Man revealed that the hydrophobic
effect caused by the presence in the hydrophobic sub-
site of Val99 instead of Leu99 made H-bond formation
difficult due to the reorientation of the indolyl group in

the CRD. These structural aspects are responsible for
part of the observed variability in biological activity in
otherwise relatively homologous proteins.
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